纯净、安全、绿色的下载网站

首页|软件分类|下载排行|最新软件|IT学院

当前位置:首页IT学院IT技术

pytorch神经网络汇聚层 Python深度学习pytorch神经网络汇聚层理解

Supre_yuan   2021-10-11 我要评论
想了解Python深度学习pytorch神经网络汇聚层理解的相关内容吗,Supre_yuan在本文为您仔细讲解pytorch神经网络汇聚层的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:Python深度学习,pytorch神经网络汇聚层,下面大家一起来学习吧。

我们的机器学习任务通常会跟全局图像的问题有关(例如,“图像是否包含一只猫呢?”),所以我们最后一层的神经元应该对整个输入的全局敏感。通过逐渐聚合信息,生成越来越粗糙的映射,最终实现学习全局表示的目标,同时将卷积图层的所有有时保留在中间层。

此外,当检测较底层的特征时(例如之前讨论的边缘),我们通常希望这些特征保持某种程度上的平移不变性。例如,如果我们拍摄黑白之间轮廓清晰的图像X,并将整个图像向右移动一个像素,即Z[i, j] = X[i, j+1],则新图像Z的输出可能大不相同。而在现实中,随着拍摄角度的移动,任何物体几乎不可能发生在同一像素上。即使用三脚架拍摄一个静止的物体,由于快门的移动而引起的相机振动,可能会使所有物体左右移动一个像素(除了高端相机配备了特殊功能来解决这个问题)。

本节将介绍池化(pooling)层,它具有双重目的:降低卷积层对位置的敏感性,同时降低对空间降采样表示的敏感性。

最大汇聚层和平均汇聚层

与卷积层类似,汇聚层运算符由一个固定形状的窗口组成,该窗口根据其步幅大小在输入的所有区域上滑动,为固定形状窗口(有时称为池化窗口)遍历的每个位置计算一个输出。然而,不同域卷积层的输入与卷积核之间的互相关计算,汇聚层不包含参数。相反,池运算符是确定性的,我们通常计算池化窗口中所有元素的最大值或平均值。这些操作分别称为最大汇聚层(maximum pooling)和平均汇聚层(average pooling)。

在这两种情况下,与互相关运算符一样,池化窗口从输入张量的左上角开始,从左到右、从上到下的在输入张量内移动。

在这里插入图片描述

填充和步幅

和先前一样,我们可以通过填充和步幅以获得所需的输出形状。

多个通道

在处理多通道输入数据时,汇聚层在每个输入通道上单独运算,而不是像卷积层一样在通道上对输入进行汇总。这意味着汇聚层的输出通道数与输入通道数相同。


相关文章

猜您喜欢

  • JS继承方式及优缺点 JS中的六种继承方式以及优缺点总结

    想了解JS中的六种继承方式以及优缺点总结的相关内容吗,Nordon在本文为您仔细讲解JS继承方式及优缺点的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:js继承方式及其优缺点,javascript继承方式,js的继承方式有哪些,下面大家一起来学习吧。..
  • C语言文件操作 C语言文件操作详解

    想了解C语言文件操作详解的相关内容吗,股神。在本文为您仔细讲解C语言文件操作的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:C语言文件,C语言文件操作,下面大家一起来学习吧。..

网友评论

Copyright 2020 www.systonsoft.com 【赛顿软件】 版权所有 软件发布

声明:所有软件和文章来自软件开发商或者作者 如有异议 请与本站联系 点此查看联系方式